Centre for Geohazard Observations

The Centre for Geohazard Observations (CGO) is responsible for installing and managing the Observatory’s geophysical and other field instrumentation networks spread over seven countries across South and Southeast Asia. It supports EOS in various technical matters include acquiring, computing, and archiving geophysical data. The Office strives to provide a better and more conducive technological environment for our scientists both in the field and in the lab.

The Centre is involved in:

TRTK GPS StationGPS Operation
The two major continuous Global Positioning System (cGPS) networks in South and Southeast Asia that the CGO maintains are the Sumatran GPS Array (SuGAR) and the Myanmar-India-Bangladesh-Bhutan (MIBB) GPS array. The information collected from these networks can potentially improve tsunami warning systems after a major earthquake event.

Welding of GPS Antenna Tripod

Mounting the GPS Antenna

GPS Instrument Housing

Seismic Operation
Seismic networks monitor earthquakes and volcanic activities in real time and are linked to the cGPS stations. The CGO works closely with other research institutes to operate these networks. Our collaborators include the Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Center of Volcanology and Geological Hazard Mitigation (CVGHM). The Observatory provides important information about current tectonic and volcanic activities, and work with our international collaborators to understand earthquakes and volcanic activity that occur in the region.

A seismic station for the study of volcanoes A deep well seismic station for studying tectonics

LiDAR-Based Surveying

Terrestrial LiDAR Project in ChinaTerrestrial LiDAR is a ground-based laser scanning technique that provides real topography in ultra-high resolution for areas spanning up to several kilometres. The CGO has also carried out airborne-LiDAR surveys in Nepal and Myanmar.  This technique is ideal for regional high-resolution surveys.

Loading the LiDAR equipment onto the plane Airborne LiDAR Team in Nepal

Ground-penetrating Radar (GPR) is a technique that uses high-frequency radio waves to image the subsurface of the Earth. This technique is often used by our scientists to study sediment deposits related to coastal hazards in Southeast Asia.

The infrasound monitoring system employed by EOS was first used to monitor volcanic eruptions from Indonesia. This monitoring system detects low-frequency sound waves, and the data collected will provide information on the location and explosivity of the eruption, allowing our scientists to determine the impact of volcanic ash on air traffic in and around Singapore.

Small Unmanned Aerial Vehicle (UAV) surveys provide detailed information of temporal landscape changes, post-disaster landscape, and potentially high-resolution digital terrain models acquired from aerial photos taken from the drone. Our scientists use a combination of techniques, including images taken from the UAV, to investigate faults and volcanic activities.