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[1] The impact of self‐attraction and loading (SAL) on ocean bottom pressure x, an effect
not previously considered, is analyzed in terms of the mean annual cycle based on decade‐
long estimates of changes in land hydrology, atmospheric pressure, and oceanic
circulation. The SAL‐related changes in x occur as a result of deformation of the crust due
to loading and self‐gravitation of the variable fluid loads. In the absence of SAL, net
freshwater input and changes in mean atmospheric pressure over the ocean give rise to a
spatially constant x annual cycle with an amplitude ∼1–2 cm in equivalent water thickness.
Consideration of SAL physics introduces spatial variations that can be significant,
particularly around continental boundaries, where the amplitude of deviations can exceed
1 cm. For the spatial variability induced by SAL effects, changes in both land hydrology
and atmospheric pressure are important. Effects related to the changing ocean
circulation are relatively weaker, apart from a few shallow coastal regions. Comparisons
with a few in situ, deep ocean observations indicate that for the most accurate x estimates,
one needs to consider spatially varying SAL‐related signals, along with the effects of
mean atmospheric pressure and net freshwater input into the oceans. Nevertheless, the
most complete estimates, including also effects of ocean circulation, are able to account
for only ∼1/3 of the observed annual variances. Sources of the remaining contribution
remain unclear.

Citation: Vinogradova, N. T., R. M. Ponte, M. E. Tamisiea, J. L. Davis, and E. M. Hill (2010), Effects of self‐attraction and
loading on annual variations of ocean bottom pressure, J. Geophys. Res., 115, C06025, doi:10.1029/2009JC005783.

1. Introduction

[2] Ocean bottom pressure (x) signals can be used to
describe variability in ocean mass transports driven by
surface wind stress and heat and freshwater exchanges with
the atmosphere [e.g., Ponte, 1999]. Signals in x can repre-
sent changes in deep ocean circulation, and thus be used to
help infer changes in heat transports. Knowledge of x is also
needed to interpret fluctuations in sea level, which is an
essential variable in ocean climate studies.
[3] Variability in x at monthly and longer time scales has

been studied using regional in situ observations [e.g.,
Hughes and Smithson, 1996], global gravity measurements
from the GRACE (Gravity Recovery and Climate Experi-
ment) mission [e.g., Ponte et al., 2007], and theoretical [e.g.,
Gill and Niiler, 1973] and numerical [e.g., Ponte, 1999]
models. For the annual cycle of interest to us here, com-
parisons of model results and in situ observations have been

rare, but recent analyses of GRACE data reveal observed
amplitudes considerably larger than the models indicate
[Ponte et al., 2007]. Apart from possible problems with the
observations, there might be some issues in the use of
numerical models to simulate x variability. For example, in
order to account for non‐Boussinesq processes, which are
traditionally neglected in general circulation models, x fields
need to be corrected a posteriori to allow ocean mass rather
than volume to be conserved [Ponte, 1999].
[4] Similarly ignored in numerical models are changes in

global mean bottom pressure � (throughout the paper,
overbar denotes quantities that are spatially averaged over
the global oceans) that can be associated with net freshwater
mass transfers into the ocean (�F) and are related to the
global hydrological cycle. Estimates of �F have been made,
however, using different methods, including temporal inte-
gration of global mean freshwater flux from atmospheric
reanalysis [Vinogradov et al., 2008], using estimation from
GRACE observations [Chambers et al., 2004], removing
from altimetric sea level thermosteric effects calculated from
in situ temperatures [Chen et al., 2005], and scaling the
global mean halosteric height by an appropriate constant
[Vinogradov et al., 2008]. These studies suggest a signifi-
cant annual cycle in �F with annual phase peaking around
October and amplitude of 0.5–0.8 cm. (Throughout the
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paper, values of x are given in equivalent centimeters of
water obtained by normalizing x by constant gravity g and
constant seawater density r0.) Another contribution to � that
is usually not accounted for in numerical models is that
associated with atmospheric pressure forcing. On seasonal
scales, the resulting x signal is spatially constant due to the
ocean’s isostatic response to atmospheric pressure loading
[Ponte, 1999]. The amplitude of the annual cycle in the
mean atmospheric pressure averaged over the global oceans
(�A) is significant and can reach up to 1 cm [Ponte et al.,
2007].
[5] An effect that has not been considered at all in

numerical studies of annual variability in x is that of self‐
attraction and loading, abbreviated as SAL hereafter [after
Gordeev et al., 1977]. A change in mass of the air and water
column exerts a load on the seafloor, causing its deforma-
tion. The implicit change in earth and water mass distribu-
tion modifies the gravitational field, which leads to further
adjustments of the mass field. These effects can act on the
dynamical x changes associated with atmospherically driven
mass redistribution in the ocean. In addition, any change in
mass loads over land from, e.g., hydrologic and cryospheric
processes and changes in atmospheric pressure, leads to
similar effects and can potentially affect x fields.
[6] Analysis of SAL terms requires solving integrodifferential

equations for x using iterative methods or calculating con-
volution integrals on global grids [Stepanov and Hughes,
2004]. Such calculations are computationally expensive,
which is part of the reason why these effects are not included
in ocean circulation models. The importance of SAL for the
study of tides has been long recognized. The effects are
highly parameterized in tidal calculations and can change
their amplitudes by up to 50% [Ray, 1998; Gordeev et al.,
1977]. The impact of SAL on the annual cycle in x has
never been studied, to our knowledge, but recently Tamisiea
et al. [2010] have shown that SAL effects cause variations of
the annual amplitude of relative sea level on the order of 1 to
2 cm, supporting previous studies by Clarke et al. [2005],
who found spatial patterns of sea level response being highly
nonuniform. Such perturbations are similar in amplitude to
expected x variability at the annual period [Ponte, 1999;
Vinogradov et al., 2008]. Here we attempt to evaluate the
relative importance of the SAL and � effects on the annual
cycle in x.

2. Models

[7] To investigate the magnitude of the SAL‐related
changes in x (xSAL) we use spatially varying monthly
anomalies derived by Tamisiea et al. [2009] for the period
from 1980 to 1997. A water load is introduced into the oceans
that balances the change in water mass on the continents and
in the atmosphere. An iterative solution of the spatial dis-
tribution of this water load is determined by assuming an
initial uniform load together with the specified continental
and atmospheric loads, calculating the impact on the crust
and geoid height, and then allowing the ocean to adjust to
these changes [Mitrovica and Peltier, 1991; Kendall et al.,
2005]. The xSAL corrections are derived under the assump-
tion that SAL effects give rise to a static ocean response.
Three different effects are represented by (1) continental
water mass changes using hydrological fields from LadWorld

[Milly and Shmakin, 2002], (2) atmospheric pressure using
the reanalyses from the National Centers for Environ-
mental Prediction/National Center for Atmospheric Research
[Kalnay et al., 1996], and (3) dynamic bottom pressure
driven by atmospheric forcing and provided by the output of
the MIT general circulation model described by Hill et al.
[2007]. The resulting x changes due to these sources of
mass variation are referred to as xSALH

, xSALA
, and xSALD

,
respectively. Contributions of snow and ice from Greenland,
Antarctica, Alaska and other sources to the total water
storage are not considered here.Values of xSAL can be con-
sidered as a sum of its global mean and a deviation from
that mean:

�SAL ¼ �SAL þD�SAL ð1Þ

The deviations DxSAL represent spatially varying anomalies
of the SAL‐related changes in x. Computation of the global
mean �SAL term involves spatial integration of xSAL fields
under different loads:

�SAL ¼ 1

A

Z
A
�SALdA ¼ 1

A

Z
A
ð�SALH þ �SALA þ �SALDÞdA ð2Þ

where A is the surface area of the global ocean. The first
term in (2) represents net input of freshwater into the ocean
from the land via the hydrological cycle; the second term
represents freshwater exchange between the ocean and
atmosphere due to changes in atmospheric water vapor; and
the third term is equal to zero by definition. Thus, �SAL reflects
net mass transfer into the ocean due to freshwater flux:

�F ¼ �SAL ð3Þ

[8] Time series of the global mean � is estimated as a sum
of the net mass transfer into the ocean due to freshwater
exchange and the mean surface atmospheric pressure over
the ocean:

� ¼ �F þ �A ð4Þ

where the atmospheric term �A is calculated as by Ponte
et al. [2007].
[9] The impact of the SAL and � terms is analyzed by

comparing these signals with dynamic bottom pressure
variations (xd) associated with mass redistribution in the
ocean and generally driven by atmospheric surface forcing.
Estimates of xd used here are based on monthly averaged
fields from one of the ECCO solutions (version 2, iteration
216) described by Wunsch and Heimbach [2007] and
Wunsch et al. [2009], which covers the period from 1992 to
2004. These solutions use the MIT general circulation
model and its adjoint to produce an optimized estimate of the
ocean state that is consistent with most available observa-
tions, each weighted according to the best existing estimate
of the data and model errors. The optimization is achieved
through adjustments of the initial temperature and salinity
fields and the surface fluxes of momentum, heat and
freshwater. To account for non‐Boussinesq processes that
are not represented in the solution, sea level and bottom
pressure are corrected by unmodeled volume changes that
are, following the approach described by Ponte [1999],
equal to the spatial mean steric height.

VINOGRADOVA ET AL.: SAL EFFECTS ON ANNUAL BOTTOM PRESSURE C06025C06025

2 of 10



[10] As mentioned earlier, inserting the SAL effects
directly into numerical ocean models involves calculating
the SAL convolution integrals at each time step, which
requires far more computing resources. Such procedures will
be necessary when studying the ocean response at high
frequencies, for which dynamic effects are likely to be
important [Stepanov and Hughes, 2004]. In this study,
however, we focus on monthly and longer scales at which an
equilibrium response is assumed, and the effect of SAL on x
is calculated a posteriori after the model is run.

3. Bottom Pressure Data

[11] To investigate how well x signals are modeled, and in
particular to examine the relative importance of SAL and �
effects, it is useful to compare our x estimates with ob-
servations. Satellite gravity data provide global x fields but
with considerable noise [Quinn and Ponte, 2008]. In this
study, we choose instead to examine in situ deep ocean
measurements from bottom pressure recorder (BPR) stations
provided by several programs, including (1) DART (Deep‐
ocean Assessment and Reporting of Tsunamis) stations
maintained by NOAA, (2) GLOUP (Global Undersea
Pressure), and (3) ACCLAIM (Antarctic Circumpolar Current
Levels by Altimetry and Island Measurements) maintained
by the National Oceanography Centre, United Kingdom.
Locations of BPR measurements can be seen in Figure 1.
[12] The DART BPRs collect data at a 15 s interval and

record pressure in meters that represents the height of the
ocean surface above the seafloor. The DART measurements
are fairly recent and cover the period from 2003 to present.
The GLOUP and ACCLAIM data contain pressure in mil-
libars (hPa) which is sampled either every 15 min, hourly, or
daily. The GLOUP measurements cover the period from
1975 to 1995, and the ACCLAIM data contain the time
period from 1985 to 2006, although there are many gaps
during the sampling period. Prior to analysis, all data sets
went through careful quality control, in which we estimated
and eliminated artificial shifts in the data and averaged all
data sets to daily series.

4. Methods

[13] The x series are analyzed in terms of the mean annual
cycle. The mean annual cycle is estimated by first averaging
the fields corresponding to the months of January, February,
etc. into a 12 month mean time series and then calculating
the annual harmonic of this series. The mean annual cycle
for the ECCO solution and SAL terms is computed based on
13 year and 17 year periods, respectively. The mean annual
cycle for the in situ BPR observations is based on different
record lengths depending on data availability. It is worth
noting that the estimated mean annual cycle for the SAL and
ECCO fields was not particularly sensitive to the time
period as long as the series length was sufficiently long. Our
sensitivity analyses, in which we compared annual cycles
computed based on periods with different length, indicate
that the root‐mean‐square (rms) difference between the
mean annual cycle based on record lengths of 6 years and
longer is only a few percent of the annual RMS values.
Annual cycles of BPR observations, however, are usually

based on a shorter period (1 to 3 years), and thus are less
representative of true mean values.
[14] Prior to analysis, each data set was converted to

monthly series that have had a mean removed. ECCO and
SAL fields were defined on the same grid, and were col-
located with BPR stations based on the grid point that is the
nearest to the station location. Initially we started with
100 BPR stations that cover time periods longer than 1 year.
A number of BPR stations contain x measurements that
were collected during different periods in time but at the
same locations. Such stations, and also those stations that
are located within 1° of each other, are grouped together,
which reduced the number of BPR series to 30.
[15] In the comparisons with data, we examine three dif-

ferent models, gradually adding the effects of � and SAL to
the fields xd from the ECCO estimates. The three models are
defined as

m0 ¼ �d ð5Þ

m1 ¼ �d þ � ð6Þ

m2 ¼ �d þ � þD�SAL ð7Þ

where model m0 is the initial ECCO solution, model m1

represents x simulations corrected by the changes in tem-
porally varying global mean bottom pressure �, and m2 is the
most complete model that includes both temporal and spatial
variations in xSAL.

5. Mean Annual Cycle of x
[16] As previously mentioned, the focus of this study is

the mean annual cycle. Although high‐frequency variations
in x can dominate the spectrum, annual signals in � and xSAL
tend to be large compared to those at other periods, which
would make these effects more significant. All bottom
pressure results are presented in terms of equivalent water
thickness.

5.1. Annual Cycle in xd and x
[17] Amplitudes of the mean climatological annual cycle

in xd estimated using the ECCO solution do not exceed
2 cm, except for some areas in the Southern Ocean and
along shallow coastal regions (Figure 1). In particular, in the
Indian sector of the Southern Ocean xd shows strong annual
variability with amplitudes comparable to those in sea level
[e.g., Fukumori et al., 1998]. The phase of the mean annual
cycle mostly displays a basin‐scale pattern. Variations in xd
over most of the Pacific and Indian oceans appear to be in
phase, with the exception of the central part of the sub-
tropical North Pacific gyre; seasonal changes in xd in the
Atlantic and Pacific oceans are roughly out of phase with
each other. The amplitude and phase patterns in Figure 1 are
consistent with previous estimates by Ponte [1999] and
Vinogradov et al. [2008].
[18] As previously mentioned, xd does not include the

effects of � caused by the changes in atmospheric pressure
(�A) and those related to net freshwater exchange with the
land and atmosphere (�F), as defined in (4). Our estimates of
� yield an annual cycle of about 2.5 cm peak to peak, with
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maximum value of � occurring in late August (Figure 2f).
The atmospheric effect �A has an annual amplitude of about
1 cm, with a maximum in July, that is caused primarily by
variable atmospheric air loadings, such as the shift of air
masses toward Siberia in winter. Freshwater effects �F
amount to peak‐to‐peak annual variations of about 2 cm,
peaking in October. The estimates are consistent with those
of Vinogradov et al. [2008], Ponte et al. [2007], and Chen
et al. [2005], which are based on different methods, data
types and time periods. Large amplitude annual cycles in �,
relative to xd, indicate the significance of the annual oscilla-
tions in � and thus should be taken into account in studies of x.

5.2. Annual Cycle in xSAL
[19] Spatial patterns of the annual cycle in x can be

affected by xSAL fluctuations that are not treated in section
5.1. Figure 2 shows mean annual cycle of variations
caused by different loads (xSALH

, xSALA
, and xSALD

) and their
combination (xSAL). As previously mentioned, the constant
part of the SAL‐related fluctuations �SAL approximates net
mass transfer into the ocean �F due to freshwater flux from the
land and atmosphere. The deviations from this mean (DxSAL)
result from the relative balance of the globally averaged
background ocean mass variation and the local effects of
the crustal deformation due to loading, the gravitational

Figure 1. Amplitude and phase of mean annual cycle in xd estimates from the ECCO solution and
estimates from in situ BPR measurements (shown as circles). All amplitude values are given in equivalent
centimeters of water. The color scale extends beyond 5 cm. Phase ranges from −180° to +180°, with −180°
phase corresponding to a peak occurring in mid‐January, −90° corresponding to a peak in mid‐April, 0°
corresponding to a peak in mid‐July, 90° corresponding to a peak in mid‐October, and so on.
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effects of this deformation, and the direct gravitational
attraction of the load.When a land coastal region loses a large
volume of water, for example through glacial melt or river
discharge, the local crust, including the nearby seafloor, up-
lifts and changes the local gravity field. In addition, because

the mass in the region decreased, its gravitational attraction
decreases, causing the nearby sea surface to fall. Simulta-
neous to these local changes, the total ocean mass is varying.
These effects can amplify or cancel each other, resulting in
spatial variability of the xSAL changes.

Figure 2. Annual amplitude (in cm) and phase of x corrections for the SAL effects under (b–d) individ-
ual loads and (a, e) their combination. Phases are indicated by the lines with the origin denoted by dots. A
phase of 0° corresponds to a peak in the month of July and is shown by a line pointing in the eastward
direction; phase increases anticlockwise and is defined as in Figure 1. (f) Annual cycle of � is computed
according to equation (4) as a sum of atmospheric (�A) and freshwater (�F) terms. The time labeling
corresponds to the middle of the month from January to December.
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[20] As seen in Figure 2, most of the deep ocean, including
tropical regions, exhibit annual xSAL fluctuations of the order
of 1–2 cm or smaller. Larger amplitudes (>2 cm) can be seen
over parts of the Indian ocean. Among the three sources of
mass variations considered in this study, hydrological load
dominates xSAL (Figure 2b). Whereas most of the oceans
are in phase, with the annual maximum occurring around
October, the amplitude of xSALH

varies in space, ranging
from a few millimeters at high latitudes to about 2 cm in
the Bay of Bengal. Spatial variability of xSALH

, with higher
amplitudes in the Pacific, lower amplitudes in the Atlantic
and variations along the coasts, reflects spatial distribution
of hydrological processes. Estimates of the seasonal storage
vary from less than 1 cm water equivalent in areas with
uniform climatic conditions to 45 cm water equivalent in
tropical river basins with a strong seasonal cycle [Riegger
and Güntner, 2005].
[21] Variations in atmospheric pressure are the second

largest contributor to the xSAL changes (Figure 2c). Spatial
variations in annual amplitudes and phases of xSALA

are
significant, resulting from seasonal fluctuations in atmo-
spheric pressure that cause a shift in air masses between the
hemispheres and over different latitudinal zones. Although
generally xSALA

is weaker compared to xSALH
, they are of the

same order of magnitude and thus xSALA
needs to be taken

into account. For example, in the regions around Antarctica
and the Asian coastline, annual amplitudes of xSALA

are
large, responding to a strong seasonal cycle in atmospheric
circulation in the southern polar cell and large seasonal
variations of the Asian summer monsoon, respectively. In
these regions, the amplitudes of xSALA

and xSALH
are com-

parable and their phase difference decreases the signal in the
total xSAL.
[22] Variations in xSALD

are the weakest among the three
loads (Figure 2d). However, there is a high level of spatial
variability both in amplitude and phase. Variability of xSALD

is higher in the Southern Ocean, Indonesian Seas, and in the
Gulf of Carpentaria (northern Australia), where amplitudes
of 1 cm are attained. Some regions of high xSALD

variability
correspond to closed contours of planetary potential vor-
ticity f/H (with f being the Coriolis parameter and H the
ocean depth), and were pointed out as energetic regions by
previous studies as well [e.g., Fukumori et al., 1998].
Overall, spatial patterns of xSALD

are close to the amplitudes
of xd seen in Figure 1. On average, the amplitude of xSALD

represents about 15% of xd signal and can reach 20–30%
in areas of high xSALD

variability.
[23] The spatially varying patterns introduced by consid-

eration of SAL physics and seen in DxSAL (Figure 2e)
illustrate most clearly the importance of the SAL effects
over the globe. In the open ocean, xSAL and �SAL are very
similar, as indicated by the very small amplitude of DxSAL
(0.2 cm or smaller aside from an area in the South Pacific).
However, around many boundary regions, DxSAL has an
annual cycle with amplitudes of around 1 cm that are of the
same order as x. Strong signals in DxSAL are seen near
Antarctica, the Gulf of Carpentaria, and the Amazon river
basin, in response to individual loads of atmospheric pres-
sure, dynamic ocean, and hydrology, respectively, or to their
combination as, e.g., in Southeast Asia. In these regions,
SAL effects play an important role in seasonal variations of
x, and DxSAL fluctuations cannot be neglected.

5.3. Annual Cycle in Observations of Ocean Bottom
Pressure

[24] Observed amplitudes of the mean annual cycle in x,
inferred from our BPR analysis, are shown as colored circles
in Figure 1. The strongest annual amplitudes (7–9 cm) are
detected in the Bay of Bengal, western Pacific and southern
Aleutian Islands. Moderate annual amplitudes (2–6 cm) can
be observed in the Indian Ocean sector of the Southern
Ocean, southern Atlantic and in the Gulf of Alaska. The
weakest annual amplitudes (<2 cm) are found along the
western coast of the U.S., Hawaii and Central America.
There are regions (e.g., in the Gulf of Alaska, along the
western coast of the US) where observations show a high
level of spatial variability in the annual cycle. In these
regions, amplitudes between the nearest stations can differ
by more than a factor of two, possibly reflecting sensitivity
of x to short length scale oceanic features, such as highly
variable bottom topography in the area.

6. Model and Data Comparison

[25] To investigate the contribution of � and DxSAL to the
annual cycle of x in a more quantitative manner, we compare
x measurements from the BPR stations with xd estimates
corrected by the two effects defined in equations (5)–(7). The
impact of each effect will be quantified in terms of the model/
data agreement.
[26] As mentioned earlier, comparisons of the simulated

x signals with in situ observations are rare. Hirose et al.
[2001] compared high‐frequency x signals from a baro-
tropic model with BPR observations at 18 sites in the
Southern Ocean and showed that the simulated x under-
estimated observed variances at all sites, with an average
model/data correlation of 0.43. Here we compare simulated
and observed annual x signals based on in situ measurements
from 30 grouped BPRs. To quantitatively measure model/
data agreement we compare observations in terms of
percentage of the annual variance explained by each model
mi in (5)–(7). The explained variance is computed as

�i ¼ �2ðdÞ � �2ðd � miÞ
�2ðdÞ � 100% ð8Þ

where s2(X) denotes variance of X, d are BPR observa-
tions, and mi for i = 0, 1, 2 are models defined by (5)–(7).
Values of the modeled and explained variances computed
at 30 BPR sites are given in Table 1 and Figure 3. With
definition (8), high values of a indicate good model/data
agreement.
[27] The ECCO solution m0 explains a small percentage

of annual variances, only 17% on average. Values of xd tend
to underestimate observed variability almost at all sites (see
standard deviations in Tables 1 and 2 for details). Typical
values for the explained variance a0 are small (<10%) or
negative. A few exceptions of high a0 values include
stations where both xd and data show strong signals (e.g.,
stations 4, 17).
[28] Adding a spatially constant correction � to the ECCO

solution improves model/data agreement in half of the sta-
tions and almost doubles global average value of the ex-
plained variance. The number of stations where m1 explains
most of the data variance also increases (see Table 2).
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Typically, stations that exhibit smaller amplitudes in the
data, i.e., ≤2–3 cm, benefit the most due to the comparable
amplitude of the � term (e.g., station 24 in Figure 4).
However, if there is a phase shift between m0 and observed
annual cycles, m1 does not improve model/data agreement.
See for example stations along the North American west
coast (stations 5 and 10 in Figure 4). As was discussed in
section 5.3, these regions show high spatial variability,
with quite different annual cycles at stations that are geo-
graphically close, which indicates the importance of fine

spatial structures that are not resolved by coarse‐resolution
model m0.
[29] Spatially varying correctionDxSAL can further improve

model/data agreement, although the difference between m2

and m1 is less dramatic compared to that between m1 and m0.
On average, m2 improves the variance explained by ∼3%
mostly by reducing the number of negative values of a2

compared to a1. Typically, m2 performs better at stations
where DxSAL amplitudes are large (e.g., Bay of Bengal,
station 2 in Figure 4) and phase representation is better

Figure 3. Percentage of annual variance explained by models (top) m_0, (middle) m_1, and (bottom)
m_2, computed according to equation (8).
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(e.g., station 22 in Figure 4). This result indicates that spatial
variability provided by xSAL effects is important in the
treatment and understanding of x seasonal signals.
[30] Simulated and observed seasonal variations in x are

compared in terms of the mean annual cycle, which is based
on a 13 year period for the models and 1–3 year period for
the data, depending on availability of observations. To
assess the uncertainty related to averaging over different
time periods, we compute the standard deviation of xd
annual amplitudes during the 13 year period. The values
shown in Table 1 range from a few millimeters to less than
1 cm, with a global average value of 0.3 cm, which is only
about 10% of the global average amplitude of the BPR mean
annual cycle. In contrast, a number of amplitudes of BPR
and the various models differ by factors of more than two.
Thus, most of these differences cannot be attributed to the
expected year‐to‐year variability of the annual cycle and the
different record lengths used in our comparisons.

7. Conclusions

[31] Annual variability in x reflects in part the internal
mass redistribution associated with the ocean dynamic
response to momentum, heat and freshwater fluxes at the
boundaries with the atmosphere and land. The wind stress
curl is particularly significant in driving large‐scale dynamic

signals xd [Ponte, 1999; Gill and Niiler, 1973]. Fluctuations
in xd are commonly treated in model‐based estimates of x
and, apart from shallow coastal regions, have annual am-
plitudes of order 1 cm (Figure 1). Two other effects on x
arise from net freshwater exchanges with the land and
atmosphere and from changes in surface atmospheric pres-
sure over the oceans. Under a quasi‐static response to
loading, such effects give rise to spatially constant annual
signals in x [Ponte, 1999]. These signals are usually not
represented in ocean models, as they are not dynamically
relevant, but we find that they have annual amplitudes
comparable to xd (Figure 2) and thus are very important to
consider when comparing and combining models and
observations of the annual cycle in x, as also found in pre-
vious studies [e.g., Ponte et al., 2007].
[32] A component of the x signal that has not been con-

sidered before has to do with the physics of SAL. Annual
fluctuations in x associated with SAL effects were docu-
mented here (Figure 2) based on the calculations of
Tamisiea et al. [2010]. The spatial variations DxSAL asso-
ciated with SAL effects (Figure 2e) can introduce changes in
x annual amplitudes ranging from a few millimeters to more
than 1 cm, which are of the same order of magnitude of the
seasonal variations in xd over many ocean regions. The
importance of spatially varying xSAL corrections is particu-
larly clear in coastal regions, where the amplitude of DxSAL
anomalies can reach more than 1 cm.
[33] Spatial patterns in xSAL fields are primarily driven by

seasonal changes in land hydrology, which yield strongest
amplitudes near India and Southeast Asia and weakest
amplitudes in the high northern latitudes (Figure 2b).
Seasonal changes in atmospheric pressure drive significant
spatial anomalies around Asia and Antarctica, and in the
Mediterranean (Figure 2c). Effects of SAL associated with
the dynamic component xd are generally weaker, except in
some shallow coastal regions where strong annual vari-
ability is found. Our results point to the need to account for
all these SAL effects when treating the annual cycle in x.
[34] The ability to represent and understand the variability

of x seen in the records, and in particular the annual cycle,
continues to be a challenge. Our current “best” estimates,
combining xd, the spatially varying xSAL and constant �
corrections, can explain on average 32% of the variance in
the observed annual cycle in the set of BPRs analyzed here.
This value is significantly higher than the value of 17%
obtained when only xd estimates are used. However, even
the most complete x estimates considered here fall short of
explaining the observed annual variability. Similar findings
result from comparisons with GRACE data [Ponte et al.,
2007].
[35] Apart from uncertainties in the measurements,

including the limited temporal coverage of BPRs that limit
the ability to calculate a robust mean annual cycle, a long

Table 1. Annual Variance Explained by Each Model, Standard
Deviation of the xd Annual Amplitudes From the ECCO 13 Year
Series, and Standard Deviation of the Data and Each Model

Station
a0

(%)
a1

(%)
a2

(%) ERRa
s(D)
(cm)

s(m0)
(cm)

s(m1)
(cm)

s(m2)
(cm)

1 −14 −24 −23 0.4 9.4 1.7 2.2 2.2
2 24 45 52 0.2 7.6 1.2 1.9 2.1
3 −19 −40 −34 0.2 3.8 1.1 1.6 1.5
4 81 98 97 0.5 3.9 1.6 2.1 2.0
5 91 −4 37 0.3 2.0 1.0 1.5 1.2
6 −8 −24 −19 0.4 4.3 1.0 1.5 1.4
7 −7 −10 −9 0.4 2.4 1.3 1.9 1.7
8 −5 −8 −7 0.3 4.9 1.2 1.7 1.5
9 −3 −5 −4 0.4 3.5 1.1 1.6 1.5
10 −8 −14 −13 0.4 1.9 1.1 1.6 1.6
11 74 91 95 0.7 3.6 2.8 3.0 3.0
12 −1 −15 −16 0.4 6.2 1.0 1.2 1.3
13 2 32 35 0.4 5.9 1.0 1.4 1.5
14 9 31 32 0.4 9.4 1.1 1.6 1.6
15 2 −3 −3 0.4 10.3 1.1 1.4 1.5
16 10 39 42 0.4 6.1 1.1 1.6 1.7
17 74 91 95 0.7 3.6 2.8 3.0 3.0
18 8 −7 −6 0.5 3.7 0.7 1.1 1.0
19 46 76 80 0.7 2.7 2.1 2.3 2.3
20 24 59 59 0.7 3.7 2.3 2.6 2.6
21 9 44 50 0.3 4.3 0.8 1.3 1.3
22 16 0 34 0.5 8.4 1.1 1.3 1.4
23 −2 7 2 0.3 8.4 0.9 1.2 1.3
24 22 100 98 0.2 2.2 0.4 1.0 1.0
25 6 26 23 0.4 7.9 0.8 1.4 1.3
26 −6 −58 −58 0.3 2.7 0.8 1.2 1.2
27 1 31 30 0.5 5.8 0.8 1.2 1.2
28 −0 −7 −7 0.0 9.8 0.1 0.8 0.8
29 −2 55 50 0.3 2.0 0.4 0.9 0.8
30 21 35 43 0.3 7.2 1.1 1.7 1.6

aERR, standard deviation of the xd annual amplitudes from the ECCO 13
year series.

Table 2. Statistical Summary of Table 1

Model
Global Average Percent Where Percent Where Percent Where

Percent a < 10% a > 40% a ≥ 80%

m0 17 63 17 10
m1 29 50 30 13
m2 32 43 36 17
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list of errors affecting our estimates of x is possible [e.g.,
Ponte et al., 2007]. Insufficient knowledge of the atmo-
sphere and hydrology fields driving xd and xSAL is always an
issue, but perhaps most important for the case of BPR data
comparisons is the use of smoothed topography and coarse
spatial resolution (1°) in estimating xd. The BPR data rep-
resent point measurements that can be affected by fine
structures in xd variability, possibly related to topography.
Such high spatial variability will be absent from model
estimates of xd and can perhaps explain some of the
model/data discrepancies discussed in this paper.
[36] One way to mitigate the errors in x estimates is to

assimilate observations of x into ocean models. Such under-
takings, currently being considered for both BPR and
GRACE data, require estimates of the data uncertainties, and
the model/data comparisons presented here provide a good

basis to arrive at proper weights for BPR data, necessary for
the constraining procedures. Another way for error mitiga-
tion is to include missing physics in numerical ocean models
as much as possible. While seasonal changes in xSAL have
been used here under the assumption that SAL effects give
rise to a static response, the equilibrium assumption most
likely does not hold at higher frequencies [Stepanov and
Hughes, 2004], in which case explicit inclusion of SAL
physics in time‐stepping numerical ocean models will be
necessary.
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shown as colored circles.
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